

IMPLEMENTATION GUIDE
FOR KIT ENCODER

AMERICA
FRABA Inc.

1800 East State Street, Suite 148
Hamilton, NJ 08609-2020, USA

T +1-609-750-8705, F +1-609-750-8703
www.posital.com, info@posital.com

EUROPE
FRABA GmbH

Zeppelinstraße 2
50667 Cologne, Germany

T +49 221 96213-0, F +49 221 96213-20
www.posital.de, info@posital.de

ASIA
FRABA Pte. Ltd.

114 Lavender Street
#08-60 CT Hub 2, Singapore 338729

T +65 65148880, F +65 62711792
www.posital.com, info@posital.sg

BiSS C over SPI
Type KCD-BC

IMPLEMENTATION GUIDE
FOR KIT ENCODER

Version 1 2 20171218

Introduction

Within this document we explain how easy a

realization of reading BiSS C telegrams via a SPI
interface can be handled. BiSS C is a powerful

interface offering synchronization of reading

position values with a high timing accuracy and
fast transmission rates. Capture of position value is

triggered by reading out the sensor and additional

information like diagnostic data or CRC can also
be used to ensure a safe transmission.

BiSS C and SSI are very similar in principle,

because the kind of data transmission is handled

synchronously to a clock signal provided by the
PLC or drive controller. At the end a

microcontroller or FPGA must read in the

information which is quite easy to realize in
hardware. All microcontroller on the market offer

peripherial units for serial communication and SPI

is a de facto standard and free of charge.

Figure 1

In the figure 1 above you see a SPI master
configuration providing clock signals to the kit

encoder and receiving data from the kit on the

MISO pin on master side. Data are received
synchronously to the sent clock signals.

Version 1 3 20171218

IMPLEMENTATION GUIDE
FOR KIT ENCODER

Short Introduction to BiSS C

In the signal timing diagram figure 2 you can see in the beginning of the transmission a start phase

containing 2 bits with always high level or logical 1. The position value capture is triggered implicitly with

the falling edge of the clock signal. After this start phase we have a time frame called busy time within the
kit encoder is preparing the transmission of the position value in its serial interface. When this process is

done a signature phase containing 2 bits with logical “1” and “0” is transmitted. This signature is important

for the SPI master, because it indicates that the following bits are relevant now like position value,
diagnostic bits and CRC. CRC ensures a detection of wrong transmission caused by EMC or other effects.

For simple applications it’s might be sufficient to just read in the position value and abort immediately
afterwords the transmission. As you can see the overhead of the BiSS protocol is quite small and very

efficient regarding bandwidth.

Be aware that the busy time is NOT constant and varies slightly within 6 µs up to 7 µs. Because of this

issue it is strongly recommended to search in the received data stream for the “signature” to detect the

start position of position value. Don’t assume a constant number of bits for the transmission. Otherwise
you might get sporadic wrong interpretation of data values!

Figure 2

Version 1 4 20171218

IMPLEMENTATION GUIDE
FOR KIT ENCODER

In the following source example we assumed a read in value via the SPI interface of a microcontroller as a

left aligned 64 bit value, which means the first read in bit is on the left side. You can use a 8-bit or any

other SPI register length by reading in the bit stream for several times without interruptions longer than the
time out value of 12 µs. An exact handling of the SPI register itself is not given here, because each

microcontroller handels the register for controlling differently and also the naming.

Following steps should be done:
1. Define for your application the clock frequency. In most cases below 2MHz you don’t need to

consider latency times caused by line drivers or cables. Allowed clock frequency range is from

100 kHz up to 10 MHz.
2. Decide which informations you really need beside the position value like diagnostics or CRC.

The whole bit stream can be read in and afterwards relevant data frames can be masked out or

you can abort immediately the transmission after reading in position value.

Abstract Code Example

The function u64_getBissPositionValue gets a raw value as bit stream with maximum 64 bit length and

the return value is the right aligned position value consisting of 16 bit for multi-turn and 17 bit for single-

turn. If the header of the protocol or signature was not detected correctly, then the return value is
0xDEADBEEFDEADBEEF to clearly indicate something went wrong and to differentiate easily the error number

from a position value.

uint64_t u64_getBissPositionValue(uint64_t l_u64RawSPIValue)

{

#define BISS_PROTOCOL_CHECK_MASK 0xE000000000000000LLU //this is the 3 MSB position sampled by

the spi interface

#define BISS_LEADING_ONE_VALUE 0xC000000000000000LLU //this are the 2 ones from start phase and

the 0 from busy time at the start of the biss protocol header

#define BISS_START_BIT_VALUE 0x4000000000000000LLU // "010", last 0 from busy time and 10

from signature

#define MAX_BIT 61 //constant for 64 bit variable

#define BISS_FRABA_POSITAL_ENCODER_NUMBER_OF_BITS 33

uint64_t l_u64TempValue;

uint8_t i=0;

uint8_t l_u8ProtocolIsValid = 0;

uint32_t l_u32StartBitPosition = 0xB16B00B5;

l_u64TempValue = l_u64RawSPIValue;

Version 1 5 20171218

IMPLEMENTATION GUIDE
FOR KIT ENCODER

//do a protocol check and search for a "110"

do

{

 if((l_u64TempValue & BISS_PROTOCOL_CHECK_MASK) == BISS_LEADING_ONE_VALUE)

 {

 l_u8ProtocolIsValid = 1;

 break;

 }

 l_u64TempValue <<= 1;

 i++;

}while(i != 61);

//check if protocol was valid

if(l_u8ProtocolIsValid == 0)

{

 return 0xDEADBEEFDEADBEEFLLU;

}

//search for start Bit

do

{

 if((l_u64TempValue & BISS_PROTOCOL_CHECK_MASK) == BISS_START_BIT_VALUE)

 {

 l_u32StartBitPosition = i;

 break;

 }

 l_u64TempValue <<= 1;

 i++;

}while(i != 61);

if(l_u32StartBitPosition == 0xB16B00B5)

{

 return 0xDEADBEEFDEADBEEFLLU;

}

//now right align the bit stream and mask out everything that is not position value

l_u64RawSPIValue >>= MAX_BIT - i - BISS_FRABA_POSITAL_ENCODER_NUMBER_OF_BITS;

//and mask out the header

l_u64RawSPIValue &= 0x1FFFFFFFFLLU;

return l_u64RawSPIValue;

}

Version 1 6 20171218

IMPLEMENTATION GUIDE
FOR KIT ENCODER

Document History

Version Date Remark

1 20171218 Initial version.

